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ScienceDirect
Protein engineering strategies aimed at constructing enzymes
with novel or improved activities, specificities, and stabilities
greatly benefit from in silico methods. Computational methods
can be principally grouped into three main categories:
bioinformatics; molecular modelling; and de novo design.
Particularly de novo protein design is experiencing rapid
development, resulting in more robust and reliable predictions.
A recent trend in the field is to combine several computational
approaches in an interactive manner and to complement them
with structural analysis and directed evolution. A detailed
investigation of designed catalysts provides valuable
information on the structural basis of molecular recognition,
biochemical catalysis, and natural protein evolution.
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Introduction
Enzymes catalyse chemical reactions in living cells and
are used in a wide range of practical applications. In the
past, the applications had to be built around the limita-
tions of the enzyme; today, the enzymes can be
engineered to fit the process of interest [1��]. New
enzymes were traditionally obtained by isolating them
from native organisms. Later, enzymes were obtained
from metagenomic libraries without the need to culture
host organisms. DNA cloning technologies enabled
enzyme production in heterologous hosts and changes
to the genetic code to introduce modifications into the
protein structure. The invention of directed evolution
techniques opened new possibilities for massive or sys-
tematic mutagenesis.

More recently, focused directed evolution of selected
regions and the use of restricted genetic code have
become popular means of producing smaller and smarter
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mutant libraries. Structural biology techniques such as
protein crystallography or NMR spectrometry allow the
determination of protein structures to atomic resolutions
and the employment of molecular modelling for identify-
ing mutagenesis hot spots. The most recent driving force
in the field stems from gene synthesis technology, which
allows the synthesis of gene coding for putative enzymes
from genetic databases, as well as the production of
computationally designed proteins.

In silico methods, ranging from bioinformatic analysis of
primary sequences, through computer simulations of ter-
tiary structures, to the prediction of novel structures by de
novo design, wind through the platforms aimed at con-
structing optimal biocatalysts. We discuss the compu-
tational tools and their applications in protein design
that have been published in the past two years. We do
not cover the tools suitable for designing smart libraries
for focused directed evolution since we have reviewed
them recently elsewhere [2]. The article is structured in
three parts according to the purpose of the design: Firstly,
engineering enzyme activity; secondly, engineering
enzyme specificity; and finally, engineering enzyme
stability.

A number of excellent reviews have been published
recently on related topics. Davids and co-workers over-
viewed the methods suitable for designing focused
libraries and high-throughput screening [3]. Progress in
de novo protein design was discussed in the reviews by
Davey and Chica [4], Hilvert [5], Khare and Fleishman
[6], Kries and co-workers [7], and Wijma and Janssen [8].
Approaches for protein stabilization were covered by the
reviews of Wijma and co-workers [9], Bommarius and
Paye [10], Socha and Tokuriki [11], and Stepankova and
co-workers [12].

Designing and engineering enzyme activity
Bioinformatics
Suplatov and co-workers developed the web server
ZEBRA for analysing enzyme functional subfamilies
[13]. The server attempts to systematically identify and
analyse adaptive mutations. These subfamily specific
positions (SSPs) are conserved within the subfamily,
but should differ among them. The implemented stat-
istical analysis evaluates the significance of SSPs, which
can then be modified by rational design or focused
directed evolution. The method has been tested with
the a/b-hydrolase superfamily [14]. SSPs calculated for
the amidases were integrated into the sequence of the
lipase CALB and the library of mutants was constructed.
In silico screening of the library for the reactive
www.sciencedirect.com
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Workflow for analysis of tunnels in dynamic protein structures using
CAVER [18�].
enzyme–substrate complexes resulted in the selection of
lipases with significantly improved amidase activity.

The JANUS method analyses multiple-sequence align-
ments to predict mutations required for interconversion
of structurally related but functionally distinct enzymes
[15]. The method has been validated by the intercon-
version of aspartate aminotransferase into tyrosine ami-
notransferase. The incorporation of 35 mutations
resulted in a protein with the desired specificity but
low catalytic activity, which had to be optimized by
DNA back-shuffling.

Yang and co-workers presented a computational approach
for engineering an allosteric regulation [16]. The authors
conducted a statistical comparison of catalytic and allo-
steric binding sites, which revealed that allosteric sites are
evolutionarily more variable and comprise more hydro-
phobic residues than the catalytic sites. The approach was
applied to the deregulation of the allostery in fructose-
1,6-bisphosphate, but it remains to be seen whether the
methodology will work for other enzyme families.

Molecular modelling
Biedermannova and co-workers combined several mol-
ecular modelling methods to study the effect of tunnel
mutations on kinetics and reaction mechanisms of
haloalkane dehalogenase [17]. The software tool CAVER
[18�] was used to analyse tunnel dynamics in trajectories
obtained by molecular dynamic simulations (Figure 1)
and complemented with an analysis of products egressing
from buried active sites using Random Accelerated Molecu-
lar Dynamics (RAMD). The energy barriers of the product
release, calculated by the Adaptive Biasing Force (ABF)
method, were in good agreement with the data from
transient kinetic experiments. A redesign of protein tun-
nels and gates [19] using dedicated software tools [20]
provides a useful strategy for engineering enzyme
activity.

De  novo  design
De novo protein design has become mainstream, with
more than half of the reviewed articles employing this
approach to some extent. This unprecedented research
activity makes de novo design more robust, accurate, and
reliable [6]. The software suites ROSETTA and ORBIT
are the most widely used, and web-based applications
were recently developed (see below). Designed enzymes
can catalyse non-biological reactions, including multistep
retroaldol transformation, Diels–Alder cycloaddition, and
proton transfer [5,7]. They typically do not meet the
efficiencies of natural enzymes, but can be improved
by directed evolution [21,22,23�,31��].

The methodology of computational protein design is
being continuously improved by the integration of novel
protocols. Hallen and co-workers introduced an algorithm
www.sciencedirect.com Current Opinion in Chemical Biology 2014, 19:8–16
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called Dead-End Elimination with Perturbations (DEEPer)
for identifying global minimum-energy conformation of
structures with large backbone perturbations [24]. The
algorithm is expected to provide more realistic modelling
of backbone flexibility. Nivón and co-workers developed
the Pareto-Optimal Refinement Method for the efficient
design of initial scaffold libraries [25]. Keedy and co-
workers proposed a novel algorithm for modelling local
backrub motions, which are subtle backbone adjustments
taking place during amino acid substitutions [26]. These
motions participate in natural protein evolution and their
implementation in computational design algorithms
improves model accuracy. The incorporation of 114 non-
canonical amino acids into ROSETTA by building necess-
ary backbone-dependent rotamer libraries and the
parameterization and construction of a scoring function
were described by Renfrew and co-workers [27�].

A computational method to redesign the active site for
catalysing new reactions was developed by Khare and co-
workers [28�]. Using this method, the authors engineered
an organophosphate hydrolase starting from a functionally
diverse set of mononuclear zinc-containing metalloen-
zyme scaffolds. This redesigned enzyme showed the cat-
alytic efficiency kcat/Km of 104 M�1 s�1 after several rounds
of saturation and random mutagenesis, representing an
impressive increase in activity, greater than 107-fold.

Nosrati and Houk developed the software tool Selection of
Active/Binding Sites for Enzyme Redesign (SABER) to
analyse the functional sites of the proteins stored in
the Protein Data Bank [29]. The tool identifies the active
sites amendable to computational redesign by locating
potential catalytic residues in pre-defined spatial arrange-
ments. The software was thoroughly validated by its
identification of enzymes possessing the catalytic resi-
dues of o-succinyl benzoate synthase and designed Kemp
eliminase.

Privett and co-workers presented an iterative approach for
constructing a highly active enzyme catalysing Kemp
elimination reactions [30�]. The initial design was ana-
lysed by protein crystallography and molecular dynamics,
which revealed inactivity due to the presence of water
molecules in the active site and the high flexibility of the
active site residues. The mutagenesis focused deeper into
the interior of the protein and resulted in the enzyme
binding the transition state in an orientation flipped in
relation to the design model.

Blomberg and co-workers applied error-prone polymerase
chain reactions and DNA shuffling to identify hot spots
along the gene of designed Kemp eliminase, which were
subsequently mutagenized by focused mutagenesis
[31��,32]. The designed enzyme was evolved to acceler-
ate the chemical reaction 6 � 108-fold, approaching the
catalytic efficiency of highly optimized natural enzymes.
Current Opinion in Chemical Biology 2014, 19:8–16 
The crystal structure of the evolved enzyme was deter-
mined to a 1.09 Å resolution and analysed using the
software tool CAVER [18�]. Future efforts to turn evolved
enzymes into perfect catalysts will focus on optimizing
protein dynamics.

Designing and engineering enzyme selectivity
Bioinformatics
The application of traditional bioinformatic tools for the
design of selective enzymes is difficult because primary
sequences do not contain sufficient information for
describing the spatial interactions of a substrate molecule
with the active site residues. Bioinformatic tools can be
used to identify interaction hot spots and restrict the
alphabet of substitutions for the design of smart libraries
in focused directed evolution [2], which is outside the
scope of this review.

Directed evolution experiments can be rationalized by
the development of predictive models trained on exper-
imental data, similar to Quantitative Structure-Activity
Relationships. Feng and co-workers developed the Adap-
tive Substituent Reordering Algorithm (ASRA) which can be
employed in combination with many directed evolution
methods [33��]. ASRA identifies the underlying regularity
of the protein property landscape and makes predictions
about the properties of uncharacterized proteins
(Figure 2). Importantly, ASRA does not require assump-
tions of linearity, additivity, or any functional form of
structure–property relationships. The application of
ASRA was demonstrated with epoxide hydrolases, for
which the method provided reliable predictions of
multiple mutants with improved enantioselectivity. This
approach should also be applicable to other properties,
such as enzyme activity and stability.

Molecular modelling
Pratterr and co-workers applied molecular docking, mol-
ecular dynamics, and quantum mechanical calculations
for the rational redesign of the substrate ligand at the
metal centre of mononuclear non-heme iron(II)-depend-
ent hydrolase. Construction of only 10 enzyme variants
resulted in a novel enzyme showing a 9300-fold enantios-
electivity switch [34�]. Durmaz and co-workers employed
molecular docking, classical molecular dynamics, and
steered molecular dynamics for engineering the chain-
length specificity of lipase [35]. The single-point
mutation L360F lowered the activation barrier for
hydrolysis of C4 substrates, while the same mutation
increased this barrier for C8 substrates.

The empirical valence bond modelling technique was used
for a quantitative analysis of enantioselectivity of lipase
by Frushicheva and Warshel [36�]. The authors evaluated
both kcat and kcat/Km for individual enantiomers of 4-
nitrophenyl 2-methylheptanoate and concluded that
extensive sampling is essential for obtaining converging
www.sciencedirect.com
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Figure 2
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Workflow for adaptive substituent reordering algorithm identifying mutants with desired properties [33��].
results. They further outlined the use of the linear response
approximation approach to analyse the contributions of
each residue to the free energy corresponding to enzyme
enantioselectivity.

De  novo  design
The design of biocatalysts binding small ligands with
good affinity is a very challenging problem, requiring
precise calculation of rather weak protein–ligand inter-
actions. An optimized binding site must provide: Firstly,
specific energetically favourable hydrogen-bonding and
van der Waals interactions with the ligand; secondly, high
overall shape complementarity to the ligand; and finally,
structural pre-organization in the unbound protein state
to minimize entropy loss upon ligand binding. Tinberg
and co-workers [37��] demonstrated the first successful de
novo design of ligand-binding protein with a low-to-mid
micromolar range (Figure 3). The designed binder of
Figure 3

Define specific
interactions

Place into suitable scaffold
and optimise binding site
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digoxin could be further optimized by site-saturation
mutagenesis and selections using yeast surface display
and fluorescence-activated cell sorting, reaching a pico-
molar level of binding affinity and high selectivity.

A remarkable 116-fold improvement in the catalytic
activity of a-gliadin peptidase with gluten tetrapeptide
and an 877-fold switch in the enzyme’s substrate speci-
ficity were achieved by identifying an enzyme with pre-
existing activity and optimizing it with computational
protein design [38]. The engineered enzyme can be
produced with a good yield of 30 mg/L and can serve
as a potential oral therapeutic for celiac disease.

A new method for the computational design of binding
pockets for small molecules, POCKETOPTIMIZER, was
developed by Malisi and co-workers [39�]. The tool can
be used to modify the residues making up the protein
Filter out not complementary
binding sites

Select pre-organized
binding sites

Obtain pre-organized binding
site with high complementarity
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binding pocket to improve or newly establish the binding
of a small ligand. The programme employs a protein–
ligand scoring function for estimating the free energy of
binding using the molecular modelling programs AUTO-
DOCK VINA and CADDSUITE, and AMBER to analyse
protein packing. The method was tested with a bench-
mark set consisting of proteins with available mutants
showing different binding affinities with their ligands and
known structures. The tool predicts correctly increased
affinity in 66% and 69% using CADDSUITE and AUTO-
DOCK VINA, respectively.

Designing and engineering enzyme stability
Bioinformatics
A consensus-based design of thermostable proteins uses
evolutionary information from multiple sequence align-
ments to predict the most suitable — most often naturally
occurring — amino acids at a particular position. Anbar
and co-workers successfully applied a consensual
approach to engineering endoglucanase with a 14-fold
improved half-life at 85 8C [40]. The regions responsible
for improved thermostability could be identified by sub-
sequent molecular dynamic simulations. Blum and co-
workers combined structure-guided consensus with the B-
FIT method to engineer thermostable a-amino ester
hydrolase with improved T50 by 7 8C and 1.3-fold
improved activity compared to wild-type enzyme [41].

Sullivan and co-workers addressed a problem with the low
reliability of the consensual approach by distinguishing
stabilizing from destabilizing mutations [42]. Consensus
mutations at more conserved positions were more likely
to be stabilizing in the model protein triosephosphate
isomerase, while mutations at highly correlated positions
were destabilizing. The authors suggest the exclusion of
the sites with high statistical correlations to other sites and
nearly invariant positions from the consensus design. The
application of this approach to the model protein
improved its thermostability by 8 8C. Wang and co-
workers developed the combinatorial coevolving-site satur-
ation mutagenesis (CCSM) method for identifying hotspots
for mutagenesis [43]. The method targets functionally
correlated variation sites. It was validated with a-amylase,
for which thermal stability was improved by 8 8C. We
note that the underlying principle of CCSM is opposite to
the approach proposed by Sullivan and co-workers [42].

Construction of chimeric proteins is another well-estab-
lished approach of protein stabilization, mimicking the
process of DNA recombination. Romero and co-workers
demonstrated that the protein fitness landscape can be
efficiently inferred from experimental data using Gaussian
processes [44��]. The fitness landscape describes how
protein contributes to organismal fitness, or it may
represent its biophysical properties, such as stability,
catalytic activity, and specificity. The authors developed
two different sequence design algorithms based on
Current Opinion in Chemical Biology 2014, 19:8–16 
Bayesian decision theory (Figure 4). The first algorithm
identifies small sets of sequences that are informative
about the landscape, and the second algorithm identifies
highly optimized sequences. Using these algorithms and
the data set of 261 sequences with known properties, the
authors engineered chimeric P450 enzymes that were
more thermostable than any mutants previously prepared
by chimeragenesis, rational design, or directed evolution.
The method should be applicable to modelling other
enzyme properties as well. A related approach was
employed to identify seven functional chimeras of argi-
nases from the SCHEMA-based library [45].

Shanmugaratnam and co-workers developed an interest-
ing approach allowing construction of chimeric proteins
combining the fragments from different protein folds
[46]. Using proteins belonging to flavodoxin-like and
(ba)8-barrel folds as a model system, the authors demon-
strated the power of recombination for diversifying
protein structures.

Molecular modelling
Tian and co-workers applied their software tools PRE-
THERMUT to evaluate the free energy of unfolding and
PAREPRO to calculate the site evolutionary entropy of
methyl parathion hydrolase [47]. Seven selected positions
were saturated, leading to the identification of six pos-
itions capable of enhancing protein stability. A step-wise
recombination of these mutations resulted in a four-point
mutant with improved melting temperature (Tm) by
11.7 8C. A similar method, combining a consensual
approach with FOLDX calculation, provided cellobiohy-
drolase I with T50 improved by 4.7 8C [48]. Jacobs and co-
workers combined a consensus-based approach with POP-
MUSIC calculations to design stable FN3 domains of two
different proteins [49]. The final constructs showed
increased stability, high expression levels, and good solu-
bility in Escherichia coli.

Raghunathan and co-workers proposed engineering sur-
face charges to modify protein stability and aggregation
properties [50]. The authors co-introduced stabilizing and
surface-charge modifying mutations and increased the
thermostability of a green fluorescent protein without
compromising its functional properties.

Kim and co-workers applied network analysis to the
protein structure for identifying hydrophobic interaction
clusters [51]. A network parameter of structural hierarchy,
k of k-clique, was used to predict stabilizing mutations of
xylanase. The melting temperature of the triple mutant
was increased by 8 8C, while retaining 74% of enzyme
activity. The ensemble-based Constraint Network Analysis
(CNA) was used to investigate the relationship between
flexibility and thermostability of five citrate synthases by
Rathi and co-workers [52]. The authors showed a good
ability of CNA to identify a set of weak spots in protein
www.sciencedirect.com
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Figure 4
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Workflow for property landscape analysis using the Gaussian process [44��].
structures that are suitable targets for stability pursuing
mutagenesis.

Koudelakova and co-workers demonstrated that as few as
four mutations introduced into the access tunnel of
haloalkane dehalogenase increased its thermostability
by 19 8C and extended the half-life in 40% dimethyl
sulfoxide from minutes to weeks [53�]. CAVER [18�]
calculations were used to analyse protein tunnels and
molecular dynamic simulations were used to analyse
protein accessibility for the molecules of organic co-
solvents. FOLDX analysis carried for more than 220 000
mutations in 26 enzymes from all six enzyme classes
confirmed that the concept is generally applicable to
enzymes with buried active sites.

De  novo  design
Borgo and Havranek developed an automated protocol
ROSETTA VIP — void identification and packing — to
improve poorly packed protein cores [54]. The protocol
uses the ROSETTA HOLES analysis module and a simple
geometric scoring function to identify a small set of
www.sciencedirect.com 
mutations that may yield improved packing. The protocol
is applicable for stabilizing both designed and native
proteins against chemicals and thermal denaturation.

Protein WISDOM is a web-based tool integrating methods
for various protein design problems, including de novo
design [55]. The tool enables searching for templates,
designing optimized sequences with stability, analysing
fold specificity and binding affinity, and quantitative
assessment of the designs by ranking of sequences as
well as structures. EVODESIGN is another web-based tool
for designing optimal protein sequences of given scaffolds
while predicting multiple sequence and structure-based
features for design ranking [56�]. The tool uses Metropolis
Monte-Carlo search of profiles constructed for homologous
structure families in the Protein Data Bank. The set of
local structure features, including secondary structures,
torsion angles, and solvation, are predicted by neural-
network training for optimization of structure packing.
These tools will make de novo protein design accessible to
a wider community due to their user-friendly web inter-
faces. Analogously, PYROSETTA Toolkit [57�] provides a
Current Opinion in Chemical Biology 2014, 19:8–16



14 Biocatalysis and biotransformation
graphical user interface for preparing and running proto-
cols of ROSETTA and for data analysis.

Conclusions and outlook
Protein engineering is one of the most dynamically devel-
oping scientific fields. The way proteins are being engin-
eered has changed dramatically over the last few decades,
primarily due to novel experimental technologies such
DNA cloning, high throughput and deep sequencing,
directed evolution methods, fluorescence-based sorting
technologies, and gene synthesis. In silico approaches
assisting protein design and engineering are being devel-
oped back to back with experimental techniques.

The bioinformatics approaches are most successfully used
for engineering protein stability. This is because low
resolution data and evolutionary information are suffi-
cient for identifying stabilizing mutations, but less suit-
able for predicting mutations determining enzyme
specificity or activity. Predictions of stable consensual,
ancestral, and chimeric sequences are particularly popu-
lar. The great challenge for bioinformatics analysis is the
continuous growth of sequences in genomic databases
and the urgent need for predicting a protein function from
a sequence alone. Analysis of sequences within enzyme
subfamilies and identification of SSPs, developed for
protein engineering applications, can possibly find a
use in these functional assignments. Newly developed
methods resembling quantitative-structure activity
relationships should allow the prediction of optimized
sequences from experimental data collected during
directed evolution experiments.

The molecular modelling approaches greatly benefit from
growing computational power and parallelized calcu-
lations on graphical cards. Larger molecular systems
can be studied by quantum mechanics and longer simu-
lation times can be achieved by molecular dynamics.
Molecular modelling studies often combine several in
silico methods, including bioinformatics analysis, to
describe structure–function properties and predict
beneficial mutations. A typical example of this is the
prediction of thermostable proteins by combining the
calculation of Gibbs free energies with evolutionary
analyses. Current challenges include the quantitative
modelling of selectivities and activities, which require
the precise estimation of binding energies and reaction
activation barriers. The quality of force fields properly
describing the polarizability of atoms and conformational
behaviour of amino acid residues as well as extensive
sampling can be important for obtaining quantitative
results. We expect even closer integration of molecular
modelling methods with de novo design in near future.

The de novo protein design approach made the greatest
progress of the three reviewed categories over the last two
years. The approach was successfully used for the design
Current Opinion in Chemical Biology 2014, 19:8–16 
of enzymes catalysing single step and multi-step chemical
reactions, and for the design of a ligand binding site.
Graphical user interfaces and web servers are being
developed, making the de novo design accessible to a
wider community. The current challenges are sorting
successful designs from non-successful ones and design-
ing biocatalysts to match the catalytic efficiencies of
natural enzymes. De novo design should be also demon-
strated for a wider range of chemical reactions, including
those with more complex mechanisms. The design of
active sites for chemical reactions can be complemented
by the design of ligand transport pathways. Iterative
cycles of de novo design, structural analysis, and molecular
modelling can be further extended by transient kinetics
and studies of kinetic isotopic effects, dissecting individ-
ual reaction steps, and providing valuable mechanistic
information for further improvement of modelling proto-
cols. Designed enzymes need to be improved by many
rounds of directed evolution, and this will not change in
the near future.
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