Computational Tools for Designing and Engineering Biocatalysts

Authors

Damborský, J., Brezovský, J.

Source

Current Opinion in Chemical Biology 13

Abstract

Current computational tools to assist experimentalists for the design and engineering of proteins with desired catalytic properties are reviewed. The applications of these tools for de novo design of protein active sites, optimization of substrate access and product exit pathways, redesign of protein-protein interfaces, identification of neutral/advantageous/deleterious mutations in the libraries from directed evolution and stabilization of protein structures are described. Remarkable progress is seen in de novo design of enzymes catalyzing a chemical reaction for which a natural biocatalyst does not exist. Yet, constructed biocatalysts do not match natural enzymes in their efficiency, suggesting that more research is needed to capture all the important features of natural biocatalysts in theoretical designs.

Source

Damborský, J., Brezovský, J.: Computational Tools for Designing and Engineering Biocatalysts, Current Opinion in Chemical Biology , 13, 26-34, 2009.
[BibTeX] [PDF]


sign in

E-mail:
Password:   

Create new user account

Forgot your password? Please contact us at caver@caver.cz.

user statistics

524 citations
5930 registered users
85543x CAVER downloaded

news

February 26, 2018

CAVER was cited in the Proceedings of the National Academy of Sciences journal in article Tracking...

Read more

Caver Analyst 2.0 (Beta) has been just released. For more information see the download page.

Read more

February 13, 2018

CAVER was cited in the Proceedings of the National Academy of Sciences journal in article Capturing...

Read more


other tools

acknowledgement