Computation of tunnels in protein molecules using Delaunay triangulation

Authors

Medek, P., Beneš, P., Sochor, J.

Source

Journal of WSCG 15(1-3)

Abstract

This paper presents a new method of specific cavity analysis in protein molecules. Long-term biochemical research has the discovery that protein molecule behaviour depends on the existence of cavities (tunnels) leading from the inside of the molecule to its surface. Previous methods of tunnel computation were based on space rasterization. Our approach is based on computational geometry and uses Voronoi diagram and Delaunay triangulation. Our method computes tunnels with better quality in reasonable computational time. The proposed algorithm was implemented and tested on several real protein molecules and is expected to be used in various applications in protein modelling and analysis. This is an interesting example of applying computational geometry principles to practical problems.

Source

Medek, P., Beneš, P., Sochor, J.: Computation of tunnels in protein molecules using Delaunay triangulation, Journal of WSCG, 15(1-3), 107-114, 2007, 978-80-86943-00-8.
[BibTeX]


sign in

E-mail:
Password:   

Create new user account

Forgot your password? Please contact us at caver@caver.cz.

HANDS-ON COMPUTATIONAL ENZYME DESIGN COURSE

user statistics

1219 citations
6335 registered users
111927x CAVER downloaded

news

May 14, 2023

CAVER was recently cited in Nature in paper In situ architecture of the ER–mitochondria encounter...

Read more

CAVER was recently cited by the paper Symport and antiport mechanisms of human glutamate...

Read more

CAVER was recently cited in paper entitled N-Formimidoylation/-iminoacetylation modification in...

Read more


other tools

acknowledgement