Dynamics and Hydration Explain Failed Functional Transformation in Dehalogenase Design

Authors

Sýkora, J., Brezovský, J., Koudeláková, T., Lahoda, M., Fořtová, A., Chernovets, T., Chaloupková, R., Štěpánková, Prokop, Z., Kutá Smatanová, I., Hof, M., Damborský, J.

Source

Nature Chemical Biology 10

Abstract

We emphasize the importance of dynamics and hydration for enzymatic catalysis and protein design by transplanting the active site from a haloalkane dehalogenase with high enantioselectivity to nonselective dehalogenase. Protein crystallography confirms that the active site geometry of the redesigned dehalogenase matches that of the target, but its enantioselectivity remains low. Time-dependent fluorescence shifts and computer simulations revealed that dynamics and hydration at the tunnel mouth differ substantially between the redesigned and target dehalogenase.

Source

Sýkora, J., Brezovský, J., Koudeláková, T., Lahoda, M., Fořtová, A., Chernovets, T., Chaloupková, R., Štěpánková, Prokop, Z., Kutá Smatanová, I., Hof, M., Damborský, J.: Dynamics and Hydration Explain Failed Functional Transformation in Dehalogenase Design, Nature Chemical Biology, 10, 428–430, 2014.
[BibTeX] [PDF]


sign in

E-mail:
Password:   

Create new user account

Forgot your password? Please contact us at caver@caver.cz.

HANDS-ON COMPUTATIONAL ENZYME DESIGN COURSE

user statistics

1219 citations
6648 registered users
112560x CAVER downloaded

news

August 18, 2024

CAVER was recently cited in NATURE paper entitled Growth of complete ammonia oxidizers on guanidine.

Read more

CAVER was recently cited in NATURE Communications in the paper entitled Long-range charge transfer...

Read more

CAVER was recently cited in NATURE Communications in paper entitled Structural insights into drug...

Read more


other tools

acknowledgement