Engineering Protein Resistance to Organic Co-solvent and Elevated Temperature by Access Tunnel Modification

Authors

Koudeláková, T., Chaloupková, R., Brezovský, J., Prokop, Z., Pavlová, M., Hessler, M., Khabiri, M., Ettrich, R., Bornscheuer, U.T., Damborský, J.

Source

Angewandte Chemie International Edition 52

Abstract

Mutations targeting as few as four residues lining the access tunnel extended enzyme’s half-life in 40% dimethyl sulfoxide from minutes to weeks (4,000-fold) and increased its melting temperature by 19 °C. Protein crystallography and molecular dynamics revealed that the tunnel residue packing is a key determinant of protein stability and the active-site accessibility for co-solvent molecules (red dots). The broad applicability of this concept was verified by analyzing twenty six proteins with buried active sites from all six enzyme classes.

Source

Koudeláková, T., Chaloupková, R., Brezovský, J., Prokop, Z., Pavlová, M., Hessler, M., Khabiri, M., Ettrich, R., Bornscheuer, U.T., Damborský, J.: Engineering Protein Resistance to Organic Co-solvent and Elevated Temperature by Access Tunnel Modification, Angewandte Chemie International Edition , 52, 1959-1963, 2013.
[BibTeX] [PDF]


sign in

E-mail:
Password:   

Create new user account

Forgot your password? Please contact us at caver@caver.cz.

user statistics

994 citations
6071 registered users
111462x CAVER downloaded

news

July 13, 2021

CAVER was recently cited in by the paper entitled Crystal structure of a key enzyme for anaerobic...

Read more

CAVER was recently cited in the NATURE Communications article entitled Structures of a non-ribosomal...

Read more

CAVER was cited in NATURE Communications in the article Structure-guided insights into heterocyclic...

Read more


other tools

acknowledgement