Computational tools for designing and engineering enzymes

Authors

Damborský, J., Brezovský, J.

Source

Current Opinion in Chemical Biology 19

Abstract

Protein engineering strategies aimed at constructing enzymes with novel or improved activities, specificities, and stabilities greatly benefit from in silico methods. Computational methods can be principally grouped into three main categories: bioinformatics; molecular modelling; and de novo design. Particularly de novo protein design is experiencing rapid development, resulting in more robust and reliable predictions. A recent trend in the field is to combine several computational approaches in an interactive manner and to complement them with structural analysis and directed evolution. A detailed investigation of designed catalysts provides valuable information on the structural basis of molecular recognition, biochemical catalysis, and natural protein evolution.

Source

Damborský, J., Brezovský, J.: Computational tools for designing and engineering enzymes, Current Opinion in Chemical Biology, 19, 8-16, 2014.
[BibTeX]


sign in

E-mail:
Password:   

Create new user account

Forgot your password? Please contact us at caver@caver.cz.

HANDS-ON COMPUTATIONAL ENZYME DESIGN COURSE

user statistics

1219 citations
6648 registered users
112560x CAVER downloaded

news

August 18, 2024

CAVER was recently cited in NATURE paper entitled Growth of complete ammonia oxidizers on guanidine.

Read more

CAVER was recently cited in NATURE Communications in the paper entitled Long-range charge transfer...

Read more

CAVER was recently cited in NATURE Communications in paper entitled Structural insights into drug...

Read more


other tools

acknowledgement