A Haloalkane Dehalogenase From a Marine Microbial Consortium Possessing Exceptionally Broad Substrate Specificity.

Authors

Buryska, T., Babkova, P., Vavra, O., Damborsky, J., Prokop, Z.

Source

Applied and Environmental Microbiology 84

Abstract

The haloalkane dehalogenase enzyme DmmA was identified by marine metagenomic screening. Determination of its crystal structure revealed an unusually large active site compared to those of previously characterized haloalkane dehalogenases. Here we present a biochemical characterization of this interesting enzyme with emphasis on its structure-function relationships. DmmA exhibited an exceptionally broad substrate specificity and degraded several halogenated environmental pollutants that are resistant to other members of this enzyme family. In addition to having this unique substrate specificity, the enzyme was highly tolerant to organic cosolvents such as dimethyl sulfoxide, methanol, and acetone. Its broad substrate specificity, high overexpression yield (200 mg of protein per liter of cultivation medium; 50% of total protein), good tolerance to organic cosolvents, and a broad pH range make DmmA an attractive biocatalyst for various biotechnological applications.IMPORTANCE We present a thorough biochemical characterization of the haloalkane dehalogenase DmmA from a marine metagenome. This enzyme with an unusually large active site shows remarkably broad substrate specificity, high overexpression, significant tolerance to organic cosolvents, and activity under a broad range of pH conditions. DmmA is an attractive catalyst for sustainable biotechnology applications, e.g., biocatalysis, biosensing, and biodegradation of halogenated pollutants. We also report its ability to convert multiple halogenated compounds to corresponding polyalcohols.

Source

Buryska, T., Babkova, P., Vavra, O., Damborsky, J., Prokop, Z.: A Haloalkane Dehalogenase From a Marine Microbial Consortium Possessing Exceptionally Broad Substrate Specificity., Applied and Environmental Microbiology, 84, e01684-17, 2017.


sign in

E-mail:
Password:   

Create new user account

Forgot your password? Please contact us at caver@caver.cz.

HANDS-ON COMPUTATIONAL ENZYME DESIGN COURSE

user statistics

1219 citations
6648 registered users
112560x CAVER downloaded

news

August 18, 2024

CAVER was recently cited in NATURE paper entitled Growth of complete ammonia oxidizers on guanidine.

Read more

CAVER was recently cited in NATURE Communications in the paper entitled Long-range charge transfer...

Read more

CAVER was recently cited in NATURE Communications in paper entitled Structural insights into drug...

Read more


other tools

acknowledgement