Molecular Gating of an Engineered Enzyme Captured in Real Time

Authors

Kokkonen, P., Sykora, J., Prokop, Z., Ghose, A., Bednar, D., Amaro, M., Bidmanova, S., Beerens, K., Damborsky, J., Hof, M.

Source

Journal of the American Chemical Society 140

Abstract

Engineering dynamical molecular gates represents a widely applicable strategy for designing efficient biocatalysts. Here we analyzed the dynamics of a molecular gate artificially introduced into an access tunnel of the most efficient haloalkane dehalogenase using pre-steady-state kinetics, a single-molecule fluorescence spectroscopy and molecular dynamics. Photoinduced electron-transfer – fluorescence correlation spectroscopy (PET-FCS) has enabled real-time observation of molecular gating at single molecule level with the rate constants (kon = 1822 s-1, koff = 60 s-1) corresponding well with those from the pre-steady-state kinetics (k-1 = 1100 s-1, k1 = 20 s-1).

Source

Kokkonen, P., Sykora, J., Prokop, Z., Ghose, A., Bednar, D., Amaro, M., Bidmanova, S., Beerens, K., Damborsky, J., Hof, M.: Molecular Gating of an Engineered Enzyme Captured in Real Time, Journal of the American Chemical Society, 140, 17999–18008, 2018.
[BibTeX]


sign in

E-mail:
Password:   

Create new user account

Forgot your password? Please contact us at caver@caver.cz.

HANDS-ON COMPUTATIONAL ENZYME DESIGN COURSE

user statistics

1219 citations
6587 registered users
112417x CAVER downloaded

news

CAVER was recently cited in NATURE Communications in paper entitled Structural insights into drug...

Read more

April 15, 2024

CAVER was recently cited in NATURE paper entitled Bitter taste receptor activation by cholesterol...

Read more

CAVER was recently cited in the article entitled Constitute activation mechanism of a class C GPCR,...

Read more


other tools

acknowledgement