Fast approximative methods for study of ligand transport and rational design of improved enzymes for biotechnologies


Vavra, Ondrej, Jiri Damborsky, and David Bednar


Biotechnology Advances 108009


Acceleration of chemical reactions by the enzymes optimized using protein engineering represents one of the key pillars of the contribution of biotechnology towards sustainability. Tunnels and channels of enzymes with buried active sites enable the exchange of ligands, ions, and water molecules between the outer environment and active site pockets. The efficient exchange of ligands is a fundamental process of biocatalysis. Therefore, enzymes have evolved a wide range of mechanisms for repetitive conformational changes that enable periodic opening and closing. Protein-ligand interactions are traditionally studied by molecular docking, whereas molecular dynamics is the method of choice for studying conformational changes and ligand transport. However, computational demands make molecular dynamics impractical for screening purposes. Thus, several approximative methods have been recently developed to study interactions between a protein and ligand during the ligand transport process. Apart from identifying the best binding modes, these methods also provide information on the energetics of the transport and identify problematic regions limiting the ligand passage. These methods use approximations to simulate binding or unbinding events rapidly (calculation times from minutes to hours) and provide energy profiles that can be used to rank ligands or pathways. Here we provide a critical comparison of available methods, showcase their results on sample systems, discuss their practical applications in molecular biotechnologies and outline possible future developments.


Vavra, Ondrej, Jiri Damborsky, and David Bednar: Fast approximative methods for study of ligand transport and rational design of improved enzymes for biotechnologies, Biotechnology Advances, 108009, 2022.

sign in


Create new user account

Forgot your password? Please contact us at


user statistics

1219 citations
6405 registered users
112037x CAVER downloaded


CAVER was cited in NATURE Communications paper entitled Molecular mechanism underlying regulation of...

Read more

June 22, 2023

CAVER was recently cited by the NATURE publication entitled Structural basis of the binding of DNP...

Read more

May 14, 2023

CAVER was recently cited in Nature in paper In situ architecture of the ER–mitochondria encounter...

Read more

other tools